A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza
نویسندگان
چکیده
Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza.IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full protection against a lethal challenge with H7N1 influenza in mice. Vaccine efficacy was contingent on targeting of the secreted vaccine protein to antigen-presenting cells.
منابع مشابه
Expression of HA1 antigen of H5N1 influenza virus as a potent candidate for vaccine in bacterial system
The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. In this study, bacterial system has been developed for expression and purification of properly folded HA1 antigen as a rapid response to emerging pandemic strains. Here, a recombinant H5N1 (A/Indone...
متن کاملA Reverse transcription-PCR assay for detection of type A influenza virus and differentiation of avian H7 subtype
Abstract : Avian influenza virus (AIV) infection is a major cause of influenza mortality in birds and can cause human mortality and morbidity. Although the risk of infection with avian influenza virus (AIV) is generally low for most people, the pathogenic virus can cross the species barrier and acquires the ability to infect and be transmitted among the human population; therefore the ra...
متن کاملOne-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge☆
Human infections with a novel influenza A H7N9 subtype virus were reported in China recently. The virus caused severe disease with high mortality rates and it raised concerns over its pandemic potential. Here, we assessed in the mouse model protective efficacy of single immunisations with low vaccine doses of insect cell-derived H7 virus-like particles, consisting of hemagglutinin and matrix pr...
متن کاملHeamagglutinin Conserved Domain (HA2) Prepared in Prokaryotic System is Immunogenic in Mice but not Protective against Lethal Influenza Challenge
Background and Aims: Influenza vaccine production process is time-consuming with little-to-no cross-protection which requires annual adjustment. The construction of a universal vaccine to deal with the pandemics and epidemics which occasionally threat human population is the aim of many researches worldwide. Today, influenza vaccines are mostly against two major antigenic proteins, hemagglutini...
متن کاملAn Intranasal Virus-Like Particle Vaccine Broadly Protects Mice from Multiple Subtypes of Influenza A Virus
UNLABELLED Influenza virus infections are a global public health problem, with a significant impact of morbidity and mortality from both annual epidemics and pandemics. The current strategy for preventing annual influenza is to develop a new vaccine each year against specific circulating virus strains. Because these vaccines are unlikely to protect against an antigenically divergent strain or a...
متن کامل